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Central regulation of food intake is a key mechanism contributing to energy homeostasis. Many neural cir-
cuits that are thought to orchestrate feeding behavior overlap with the brain’s reward circuitry both anatom-
ically and functionally. Manipulation of numerous neural pathways can simultaneously influence food intake
and reward. Two key systems underlying these processes—those controlling homeostatic and hedonic
feeding—are often treated as independent. Homeostatic feeding is necessary for basic metabolic processes
and survival, while hedonic feeding is driven by sensory perception or pleasure. Despite this distinction, their
functional and anatomical overlap implies considerable interaction that is often overlooked. Here, we argue
that the neurocircuits controlling homeostatic feeding and hedonic feeding are not completely dissociable
given the current data and urge researchers to assess behaviors extending beyond food intake in investiga-

tions of the neural control of feeding.

Tightly regulating energy intake is necessary for survival of all
animals. A critical component of energy balance is the ability
to obtain and consume food sufficient to meet ongoing meta-
bolic demands. The neurocircuits controlling feeding behavior
are thought to be disrupted in pathologies of hypophagia
(e.g., resulting in anorexia nervosa) or hyperphagia (e.g., result-
ing in obesity). In other pathologies, such as substance abuse,
the neural circuits traditionally thought to control feeding may
be co-opted by drugs of abuse, suggesting overlapping
feeding and reward circuitry within the brain. The cells most
closely linked to facilitating feeding are intermingled with
the cells most closely linked to reward-guided behavior.
A comprehensive understanding of these systems will greatly
facilitate our understanding of pathologies that rely on feeding
and reward circuits. Here, we pose the question of whether
such circuits are indeed dissociable and should ultimately be
considered separately given the current data and accepted
approaches.

For more than half a century, scientists have struggled to
understand the intermingled neural basis of reward and feeding
(Berridge, 1996; Hoebel and Teitelbaum, 1962; Margules and
Olds, 1962; Wise, 2004). Despite early recognition that feeding
and reward are intimately linked, these two topics have
frequently been examined in isolation for practical reasons. For
example, studies have looked at the contribution of particular
brain regions to body weight regulation, energy expenditure,
and food intake (for review, see EImquist et al., 1999; Morton
et al., 2006), while others focused on the role of neuronal popu-
lations in reward-guided behavior (Corbett and Wise, 1980; Mor-
ris et al., 2006; Schultz, 2002), but relatively few have considered
the two together (Castro et al., 2015; Saper et al., 2002) (Table 1).
Despite much progress toward understanding how certain parts
of the brain contribute to either feeding or reward, questions
of motivated behavior continue to be framed in terms of homeo-
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static feeding—food intake that is necessary to maintain typical
body weight and metabolic function—or hedonic feeding —food
intake driven by sensory perception or pleasure. These distinc-
tions can be helpful to guide first-pass efforts to define basic
functional elements of integrated neural circuits; however,
homeostatic and hedonic feeding systems are likely both
activated during all feeding situations. The degree to which
each is activated may shift depending on the type of food (i.e.,
palatable or aversive) and the physiological state of the animal
(i.e., starvation).

The anatomical interconnectedness, as well as the functional
consequences of perturbation, of classical homeostatic and
hedonic neurocircuits suggests that they contribute to a more
complex motivational system. With a few notable exceptions
discussed below, optogenetic or chemogenetic activation of
appetite-stimulating cells often produces rewarding phenotypes
(a preference or willingness to work for stimulation), whereas
activating appetite-inhibiting cells tends to be aversive (avoid-
ance of stimulation) (Jennings et al., 2013a, 2015). Here, we
will discuss anatomical and functional evidence to support the
claim that homeostatic and hedonic feeding circuits are not
presently dissociable from one another. We have divided the
relevant brain regions into three broad categories: ventricular,
intermediate, and monoaminergic. Ventricular neurons are those
cells that are positioned adjacent to the third ventricle, regulate
food intake, densely express receptors for a variety of circulating
hormones, and project to downstream “intermediate” targets.
Intermediate neurons are those cells implicated in feeding that
are positioned downstream of ventricular cells. Intermediate
cell groups can provide synaptic feedback onto ventricular neu-
rons and interact heavily with one another. Determining anatom-
ical and physiological links between ventricular neurons and
postsynaptic, molecularly defined intermediate neurons is still
an active area of research, but we have included discussion of
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Table 1. Acute Manipulations of Molecularly and Anatomically Defined Neurons that Influence Food Intake Also Affect Appetitive
Behavior

Area Cell Type Manipulation Food Intake Appetitive Behavior References

Arc  AgRP ChR2, Gq, Gs, TRPV1 T+ +/- Aponte et al., 2011; Krashes et al., 2011; Atasoy
et al., 2012; Betley et al., 2015; Dietrich et al.,
2015; Chen et al., 2016; Nakajima et al., 2016

AgRP Gi | - ? Krashes et al., 2011
POMC ChR2 (extended), Gq (chronic) 1 - ? Aponte et al., 2011; Zhan et al., 2013
POMC Gi (24 hr intake) l ? Atasoy et al., 2012
TH ChIEF 1 ? Zhang and van den Pol, 2016
Vglut2 Gg T - ? Fenselau et al., 2017
Vglut2 Gi 1+ ? Fenselau et al., 2017
Oxtr Gg T - ? Fenselau et al., 2017
PVN SIM1 Gi 1 ? Atasoy et al., 2012
TRH Gq 1 ? Krashes et al., 2014
PACAP Gg, Gs 1 ? Krashes et al., 2014; Nakajima et al., 2016
MC4R Gq T - ? Garfield et al., 2015
MC4R Gi 1 ? Garfield et al., 2015
CeA PKC3 Gi, eNpHR3.0 I+ ? Cai et al., 2014a
PKC% ChR2 T - / Cai et al., 2014a
Tac2 ChR2 T/ ? Cai et al., 2014a
Crf ChR2 T/ ? Cai et al., 2014a
Sst eArch3.0 7 ? Kim et al., 2017
Crf/Nts/Tac2 eArch3.0 L/ ? Kim et al., 2017
Nts eArch3.0 L/ ? Kim et al., 2017
Tac2 eArch3.0 L/ ? Kim et al., 2017
Vgat ChR2 T+ ? Han et al., 2017
Htr2a ChR2 T+ + Douglass et al., 2017
Htr2a eNpHR3.0 l - / Douglass et al., 2017
PBN CGRP Gqg, ChR2 T - ? Carter et al., 2013
CGRP Gi o+ ? Carter et al., 2013
MC4R Gi o+ ? Garfield et al., 2015
LHA MC4R Gq T/ ? Garfield et al., 2015
Vglut2 ChR2 T - - Jennings et al., 2013a
Vglut2 eArch3.0 1 + Jennings et al., 2013a
Vgat Gg, ChR2 1 Jennings et al., 2015; Navarro et al., 2016
Vgat Gi, eArch3.0 | - - Jennings et al., 2015; Navarro et al., 2016
Orexin Gq T+ ? Inutsuka et al., 2014
VTA Vgat ChR2 T - - Tan et al., 2012; van Zessen et al., 2012
NAc D1R eArch3.0 1+ ? O’Connor et al., 2015
D2R eArch3.0 L/ ? O’Connor et al., 2015
PFC D1R ChR2 T+ ? Land et al., 2014
D1R eNpHR3.0 | - ? Land et al., 2014

Appetitive behavior was limited to place preference and self-stimulation behavior. Note that manipulations are grouped by whether they putatively increase
(1) or decrease () neuronal output, but different manipulations that have similar net effects on cellular activity are not necessarily equivalent to each other.
+, increase; —, decrease; /, no effect; +/—, increase or decrease depending on experimental conditions; ?, effect unknown.

Arc, arcuate nucleus of the hypothalamus; AgRP, agouti-related peptide; CeA, central nucleus of the hypothalamus; CGRP, calcitonin gene-related
peptide; ChIEF, fast-closing mutated channelrhodopsin hybrid; ChR2, channelrhodopsin-2; Crf, corticotrophin releasing factor; D1R, d1-like dopa-
mine receptor; D2R, d2-like dopamine receptor; eArch3.0, archaerhodopsin-3.0; eNpHR3.0, halorhodopsin-3.0; Gg, hM3Dq (Gg-coupled designer
receptor exclusively activated by designer drug); Gi, hM4Dq (Gi-coupled designer receptor exclusively activated by designer drug); Htr2a, serotonin
receptor 2a; Gs, Gs-coupled designer receptor exclusively activated by designer drug; LHA, lateral hypothalamic area; MC4R, melanocortin 4 recep-
tor; NAc, nucleus accumbens; Oxtr, oxytocin receptor; PACAP, pituitary adenylate cyclase-activating polypeptide; PBN, parabrachial nucleus; PFC,
prefrontal cortex; PKC9, protein kinase C delta type; POMC, proopiomelanocortin; PVN, paraventricular nucleus of the hypothalamus; Sim1, single-
minded 1; Sst, somatostatin; Tac2, tachykinin 2; TRH, thyrotropin-releasing hormone; TRPV1, transient receptor potential cation channel subfamily
V member 1; Vgat, vesicular GABA transporter; Vglut2, vesicular glutamate transporter 2; VTA, ventral tegmental area.
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Figure 1. Circuits Involved in Feeding and Reward

Schematic illustration of ventricular, intermediate, and monoaminergic nuclei.
There are strong reciprocal connections between ventricular and intermediate
as well as intermediate and monoaminergic nuclei (indicated by solid lines).
Direct connections between ventricular neurons and monoaminergic nuclei
are relatively sparse or absent in adults (indicated by the dashed line).
Ventricular neurons express receptors for peripheral signaling molecules
implicated in feeding more densely than do intermediate and monoaminergic
nuclei. Arc, arcuate nucleus; BNST, bed nucleus of the stria terminalis; CeA,
central nucleus of the amygdala; DA, dopamine; DR, dorsal raphe; Hb,
habenula; LHA, lateral hypothalamic area; NAc, nucleus accumbens; PBN,
parabrachial nucleus; PFC, prefrontal cortex; PVN, paraventricular nucleus of
the hypothalamus; VTA, ventral tegmental area; 5-HT, 5-hydroxytryptamine.

the evidence where available. Monoaminergic neurons are found
downstream and positioned to receive input from intermediate
neurons, but direct input from ventricular neurons is sparse
(Figure 1). The functions of given cell groups appear to be rela-
tively specific at the level of ventricular neurons; manipulations
of these cells produce pronounced effects on energy homeosta-
sis. Intermediate neurons have more general functions, contrib-
uting to reward and aversion as well as food intake and body
weight regulation. At the most general level, monoaminergic
neurons (i.e., mesolimbic dopamine neurons) are involved in
arousal, movement, motivation, and many other adaptive func-
tions. We consider each of these levels and how they contribute
to feeding behavior in turn.

The arrangement of neurons discussed here is one of many
possible schemes that could be used when discussing com-
plex neural systems. This simplified framework permits distilla-
tion of a rich literature, reaching back nearly a century, into a
set of concepts that can be contained within a single manu-
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script. It is partially conceptual and does not imply that other
connections do not exist between these brain regions.
Although circulating hormones can directly affect cells
throughout the brain, we have chosen hypothalamic ventricular
cells as a starting point because they tend to express receptors
for circulating feeding molecules such as insulin, leptin, and
ghrelin more densely than do intermediate or monoaminergic
structures (Hill et al., 1986; Scott et al., 2009; Zigman et al.,
2006) and because they function most specifically in the regu-
lation of feeding and related behaviors, although they likely
have other important functions as well (discussed below). As
with any classification system, there are limitations to this
approach. In addition to signaling from peripheral hormones,
ventricular neurons also receive synaptic input, originating
primarily from intra-hypothalamic sources (Wang et al., 2015).
However, whether the synaptic input reflects feedback mecha-
nisms or whether it can independently drive activity is unclear.
Moreover, the neuronal organization described in this review is
a framework for understanding a common theme: neurons
most closely related to homeostatic feeding directly and indi-
rectly interface with circuits that influence reward and aversion.
Finally, the cell types and projections discussed below repre-
sent only a subset of the cells that are known to exist within
these regions. Other classes of cells may have unique molecu-
lar signatures, connectivity, and functions. The present discus-
sion is limited to neurons that are known to be involved in
feeding or reward processing, and functionally unrelated cell
types and connections have been omitted for clarity.

Ventricular Neurons of the Hypothalamus
Arcuate Nucleus
Molecularly defined cell types in the arcuate nucleus of the hypo-
thalamus (Arc) are often targeted as an “entry point” to homeo-
static feeding circuits because they are strongly influenced by
peripheral signals and perturbation robustly influences food
intake. These neurons are located in the hypothalamus along
the third ventricle and express receptors for many circulating
molecules associated with homeostatic feeding, including leptin,
ghrelin, and insulin (Cone, 2005; Hill et al., 1986; Scott et al.,
2009; Varela and Horvath, 2012; Zigman et al., 2006). Because
of their location and responsiveness to circulating hormones,
much attention has been given to the cells within the Arc and
their role in energy homeostasis. Two Arc neuron populations
that are prominently studied in the context of homeostatic
feeding exert opposing influences on food intake. They are
typically characterized by their non-overlapping molecular
expression profiles wherein one group expresses agouti-related
peptide (AgRP) and another group expresses proopiomelano-
cortin (POMC). For comprehensive reviews, see Cone (2005),
Elmquist et al. (1999), and Morton et al. (2006).
AgRP-expressing neurons are found exclusively in the Arc
and are critically important for feeding in mice. It is generally
thought that AgRP neuron output represents an orexigenic,
appetite-stimulating signal, as these neurons are activated by
fasting. In humans, AgRP expression is negatively correlated
with body mass index (Alkemade et al., 2012). Genetic ablation
of AGRP neurons causes anorexia and starvation in adult mice
despite the fact that neonatally ablated mice develop normally
(Gropp et al., 2005; Luquet et al., 2005). In fed mice, acute
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optogenetic (Betley et al., 2013) or chemogenetic stimulation
induces feeding and food-directed behavior that mimics the
behavior of fasted mice (Aponte et al., 2011; Krashes et al.,
2011; Nakajima et al., 2016). AgRP neurons co-express genes
for neuropeptide Y (Npy) (Hahn et al., 1998) and y-aminobutyric
acid (GABA) (Tong et al., 2008), and axon terminals co-release
AgRP, Npy, and GABA. They send mostly non-overlapping,
long-distance projections throughout the forebrain, hypothala-
mus, and hindbrain (discussed in detail below) (Betley et al.,
2013). AgRP neurons express receptors for and are responsive
to a variety of locally produced and circulating molecules
including leptin, ghrelin, Npy, and melanocortins (Cone,
2005). Interestingly, optogenetic activation of AgRP neurons
promotes feeding only after a relatively long latency (on the or-
der of minutes), despite the finding that the presentation of food
rapidly inhibits their activity (Betley et al., 2015; Chen et al.,
2015). The rapid inhibition in the absence of consumption
may be driven by ascending midbrain and hindbrain signals
or through poly-synaptic cortical sensory inputs, though the
mechanism is unknown.

POMC neurons are intermingled with and have similar
efferent and afferent connectivity to AgRP neurons (Cone,
2005; Wang et al., 2015). It is not known if, like AQRP neurons,
individual POMC neurons send long-distance projections to
only one target region or if individual neurons send axon collat-
erals to multiple targets. Arc POMC neurons are thought to
functionally oppose AgRP neurons. They tend to co-express
B-endorphin and cocaine-amphetamine-regulated transcript
and are responsive to circulating hormones including leptin
and insulin (Cheung et al., 1997; Cone et al., 2001; Cowley
et al., 2001). Leptin, which suppresses appetite, is thought to
activate POMC neurons because acute administration induces
expression of the immediate early gene Fos (Elias et al., 1999)
and increases Socs3 mRNA (Bjorbaek et al., 1999), suggesting
activation of negative feedback intracellular pathways in these
cells. Ablation of POMC neurons causes hyperphagia and
obesity in mice (Gropp et al., 2005; Zhan et al., 2013). Pro-
longed activation of these cells suppresses feeding via melano-
cortin receptor activation and reduces body weight (Aponte
et al., 2011; Zhan et al., 2013), while prolonged inhibition poten-
tiates food intake (Atasoy et al., 2012). The POMC product,
a-melanocyte-stimulating hormone (¢-MSH), agonizes melano-
cortin-4 receptors (MC4R). Deletion of MC4R causes obesity in
mice (Huszar et al., 1997), and mutations of MC4R are thought
to underlie some forms of obesity in humans (Vaisse et al.,
2000). AgRP acts as an inverse agonist of the MC4R (Nijenhuis
et al., 2001), suggesting that AGRP and POMC neurons share
common downstream targets. Arc POMC neurons are also
locally inhibited by AgRP neurons. However, this inhibition is
not necessary for AgRP-evoked feeding (Atasoy et al., 2012).
Together with the observations that acute optogenetic activa-
tion of POMC somata fails to reduce feeding, while extended
activation is effective, these results demonstrate that Arc
AgRP and POMC neurons differentially influence feeding. How-
ever, the mechanisms underlying their functional differences
are largely unclear. Since AgRP neurons synapse locally onto
POMC neurons and both populations have similar long-range
targets, balance between these two opposing systems is likely
necessary to maintain energy homeostasis.

Although much research has focused on Arc AgRP and
POMC neurons in feeding and energy homeostasis, an addi-
tional orexigenic neuron population has recently been identi-
fied in the Arc. Optogenetic activation of tyrosine hydroxylase
(TH)-expressing neurons in Arc drives food intake in fed mice.
These cells detect the orexigenic hormone ghrelin and excite
AgRP neurons while inhibiting POMC neurons (Zhang and
van den Pol, 2016). Furthermore, oxytocin-receptor-express-
ing glutamatergic (OXTR-Vglut2) neurons in the Arc rapidly
promote satiety via synergistic effects with POMC neurons
on postsynaptic MC4R-expressing neurons (Fenselau et al.,
2017). Still, little is known about the synaptic connectivity
and endogenous activity patterns of these non-canonical
feeding neurons.

A notable exception to the phenomenon in which orexigenic
neuron stimulation is rewarding and anorexogenic neuron stim-
ulation is aversive involves the activation of AgRP neurons,
which produces either aversive or rewarding phenotypes de-
pending on the timing of stimulation with respect to food avail-
ability (Figure 2A). Following pairing of one side of a chamber
with optogenetic activation of AQRP neurons in the absence of
food, mice gradually learn to avoid the stimulation-paired side,
displaying conditioned avoidance. One explanation for this is
that AgRP neurons guide behavior via a negative-valence signal,
which is used by the brain to actively avoid particular locations or
environmental stimuli (Betley et al., 2015). If the AgRP neuronal
signal drives the perception of hunger, it stands to reason that
promoting a feeling of hunger without delivering food would be
unpleasant. However, mice will lever-press to deliver AgRP stim-
ulation if food is present and will continue self-stimulating even if
food is removed. Importantly, mice fail to acquire robust self-
stimulation if initial training is conducted in the absence of food
(Chen et al., 2016). These paradoxical results demonstrate that
the rewarding properties of AgRP neuron activation depend on
the presence of food. While more work is needed to determine
the mechanisms underlying this phenomenon, both phenotypes
must depend on interactions with downstream targets to influ-
ence behavior. An interesting question is whether the rewarding
or aversive effects of AGRP neuron stimulation depend on mes-
olimbic dopamine since dopaminergic circuitry mediates reward
and aversion (Lammel et al., 2012).

Paraventricular Nucleus

One of the many long-range output targets for Arc AgRP and
POMC neurons is the paraventricular nucleus of the hypothala-
mus (PVN). It sits adjacent to the third ventricle dorsal to the
Arc and is implicated in a wide range of behaviors including
feeding, drinking, maternal behavior, and temperature regulation
via descending projections to the hindbrain and spinal cord (Insel
and Harbaugh, 1989; Leibowitz, 1978; Lu et al., 2001; Stanley
and Leibowitz, 1984). Microinjection of Npy into the PVN induces
feeding in rats, which can be attenuated by concurrent injection
of an MC4R agonist (Cowley et al., 1999). Optogenetic activation
of AgRP fibers projecting to PVN recapitulates feeding induced
by projection-agnostic AgRP cell body stimulation (Atasoy
et al., 2012), and activation of OXTR-Vglut2 projections from
Arc to PVN rapidly inhibits feeding (Fenselau et al., 2017).
Chemogenetic inhibition of single-minded 1 (Sim7)-expressing
neurons, postsynaptic targets of AgRP neurons within the
PVN, promotes food intake (Atasoy et al., 2012). Similarly,
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Figure 2. Functional Heterogeneity within
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targeted ablation of PVN-Sim1 neurons produces hyperphagia
and obesity (Xi et al., 2013), while chemogenetic activation of
MCA4R-expressing neurons, a target of both AGRP and POMC
neurons, suppresses feeding (Garfield et al., 2015). Optogenetic
activation of MC4R-expressing neuronal projections from PVN
to PBN suppresses food intake, but interestingly mice do not
avoid stimulation in a conditioned place preference assay, sug-
gesting that activation of this pathway is not aversive (Garfield
et al., 2015). Paradoxically, an excitatory, orexigenic projection
emanating from the PVN and projecting to AgRP neurons in
the Arc has recently been described (Krashes et al., 2014), yet
how this projection integrates with other cell groups is unclear.

Exactly how the interactions between ventricular neurons and
downstream targets coordinate behavior is murky. However,
both Arc and PVN neurons project to brain areas that influence
a variety of motivated behaviors and ultimately interface with
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reward phenotypes as well as stress
and anxiety. However, these anatomi-
cally defined regions are heterogeneous
in cell type and connectivity, the details
of which are largely unknown. Much work is needed to deter-
mine the functional relationships between molecularly defined
neuronal populations.
PBN
The pontine PBN is often studied for its role in gustation and taste
processing. It receives gustatory input via projections from the
nucleus of the solitary tract. Lesions of the PBN disrupt the ability
to acquire conditioned taste aversion while sparing conditioned
flavor preference (Reilly et al., 1993). Electrophysiological
recordings show that PBN neurons are reciprocally connected
with CeA and LHA and respond to a variety of tastants
(Li et al., 2005). Together, these results suggest that in addition
to relaying taste information to forebrain structures, PBN is
also critical for learning about taste.
The PBN receives synaptic input from both AgRP and POMC
neurons as well as other intermediate populations (Betley et al.,
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2013; Carter et al., 2013; Stachniak et al., 2014; Williams and
Elmquist, 2012; Wu et al., 2009). It is thought that the inhibitory
drive from AgRP neurons onto PBN cells suppresses feelings
of malaise that can influence food intake and reward-directed
behavior. When inhibition from ventricular neurons is removed
by genetically eliminating GABA release from AgRP neurons,
the resulting hyperactivity of PBN halts feeding (Wu et al,,
2009, 2012). In agreement with these results, PBN neurons
respond to malaise (Swank and Bernstein, 1994) and can alter
the rewarding properties of food (Soderpalm and Berridge,
2000). Interestingly, PBN neurons that encode calcitonin gene-
related peptide (CGRP) exhibit Fos induction that is inversely
related to food intake. Acute activation of PBN-CGRP neurons
or their projections to CeA suppresses feeding (Carter et al.,
2013). Acute inhibition of somata or projections to CeA restores
feeding during conditions that suppress appetite but does not
induce feeding in sated mice (Campos et al.,, 2017; Carter
et al., 2013). Of relevance to the present discussion, PBN neu-
rons send long-distance projections to LHA, ventral tegmental
area (VTA), PVN, BNST, CeA, and nucleus accumbens (NAc)
(Fulwiler and Saper, 1984; Moga et al., 1990; Pritchard et al.,
2000), thus positioning this area to integrate input related to
energy needs from ventricular neurons with visceral signals
(i.e., visceral malaise) to tune goal-oriented behavior. Indeed,
optogenetic stimulation of MC4R-expressing neurons projecting
from PYN to PBN (MC4RFYN~PBN) suppresses food intake.
Unlike other intermediate populations, which tend to be either
anorexigenic and aversive or orexigenic and appetitive, hungry
mice prefer MC4RPYN=PBN stimulation (Garfield et al., 2015),
though the broader circuit mechanisms underlying this phenom-
enon are unknown.

Extended Amygdala

The extended amygdala comprises distinct nuclei that have his-
torically been implicated in anxiety, stress, and fear learning
(Cassell et al., 1999). Two components of the extended amyg-
dala that are involved in both reward and feeding are the BNST
and the CeA. These areas receive input from ventricular neurons
and have diverse projections to intermediate and monoamin-
ergic targets.

The BNST is a critical mediator of anxiety and fear learning that
acts in coordination with other amygdaloid nuclei to regulate
physiological responses to threats (Walker et al., 2003). Chemi-
cal lesions of BNST prevent rats from expressing anxiety-like
behavior following aversive foot shock conditioning (Hammack
et al., 2004). Electrical stimulation induces aggressive behavior
in cats (Shaikh et al., 1986), potentiates anxiety-like behavior,
and elevates plasma corticosterone in rats (Casada and Dafny,
1991; Dunn, 1987). Although limited attention has been given
to its role in feeding, manipulations of BNST circuitry can have
profound effects on food intake and reward. Optogenetic activa-
tion of AgRP fibers within the BNST evokes food intake in fed
mice (Betley et al., 2013). Similarly, optogenetic activation of
GABAergic BNST efferent projections to the LHA induces
feeding and reward-related behaviors (Jennings et al., 2013a).
It is commonly thought that inhibition of food intake by stress
is mediated by corticotrophin-releasing factor (CRF). Antago-
nizing CRF2 receptors within the BNST potentiates feeding
following restraint stress (Ohata and Shibasaki, 2011), but the
role of BNST CRF is unlikely to be limited to feeding (Kash

et al., 2015). Many of the details underlying the synaptic relation-
ships between ventricular and intermediate neurons within the
BNST remain to be elucidated. Presently, the postsynaptic tar-
gets of AgRP neurons within the BNST are unknown. However,
feeding induced by stimulation of BNST-projecting AgRP neu-
rons is not affected by simultaneous inhibition of putative down-
stream MC4R neurons within the BNST (Garfield et al., 2015).

Importantly, the BNST also receives convergent input from a
variety of regions implicated in reward and anxiety phenotypes,
including the amygdala, hippocampal formation, prefrontal
cortex (PFC), and VTA (Weller and Smith, 1982). Chemogenetic
activation of Npy1R-expressing neurons, downstream targets
of AgRP neurons within the medial amygdala that project to
BNST, suppresses food intake and increases territorial aggres-
sion (Padilla et al., 2016). BNST neurons project to LHA (Jennings
et al., 2013a) and the VTA (Jennings et al., 2013b). These projec-
tions can influence anxiety states and reward phenotypes
(reviewed by Stamatakis et al., 2014). The present data suggest
that the BNST is a critical modulator of stress and anxiety
responses and may inhibit food intake in order to bias behavior
toward defensive action.

The CeA is an amygdaloid nucleus involved in regulating fear
and anxiety responses. Lesions of the CeA disrupt Pavlovian
learning and the expression of conditioned fear responses
(e.g., freezing, elevated heart rate, and elevated arterial pres-
sure), whereas electrical stimulation produces bradycardia and
reduces blood pressure (Baxter and Murray, 2002; Kapp et al.,
1979, 1982). Although it is primarily studied in the context of
fear learning and anxiety, the CeA can also influence food intake.
CeA neurons receive direct input from both AGRP and Arc POMC
neurons. In contrast to the BNST, activation of AgRP projections
within the CeA fails to induce feeding in sated mice (Betley et al.,
2013), but administration of an MC4R antagonist directly into the
CeA potentiates feeding in rats (Kask and Schioth, 2000).
Together, these results suggest that Arc POMC neurons may
uniquely influence feeding via CeA projections, though this
remains to be tested. Recent work has shown that molecularly
and anatomically distinct neuron populations within the CeA
may selectively control unique aspects of feeding and reward
(Kim et al., 2017). A subset of CeA neurons (protein kinase C-3
neurons) are activated by anorexigenic signals, and optogenetic
inhibition drives food intake (Cai et al., 2014a). Optogenetic acti-
vation of CeA neurons expressing serotonin receptor 2a or their
axons within the PBN facilitates food intake and promotes
approach (Douglass et al., 2017). Unique CeA outputs may
also differentially contribute to feeding and reward-related be-
haviors. Indeed, descending GABAergic projections from CeA
to the periaqueductal gray control prey pursuit while projections
to the reticular formation control jaw movements associated with
feeding in mice (Han et al., 2017). Much work is needed to under-
stand why lesions of the CeA have relatively little effect on energy
homeostasis and reward-directed behavior, yet acute manipula-
tions influence food intake and food-directed behavior. A more
detailed understanding of the synaptic connectivity and molecu-
lar profiles of CeA neurons will help to shed light on these issues.

In addition to afferents from ventricular neurons, the CeA also
receives synaptic input from many cortical, thalamic, and intra-
amygdala cells (Samson et al., 2005) and projects to BNST,
LHA, NAc, and ascending neuromodulatory cell groups in the
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midbrain and hindbrain (Sah et al., 2003). As such, the CeAis well
positioned to modify and coordinate fear and anxiety behaviors
as well as reward seeking and feeding. Given its established role
in modulating anxiety states (Tye et al., 2011), one possibility is
that the CeA integrates diverse inputs to select behaviors based
on the current state of the organism and ensure proper physio-
logical arousal. When threats are perceived, CeA-mediated
fear behaviors may dominate by suppressing feeding and other
competing drives, likely in coordination with the BNST. This pos-
sibility remains to be directly tested.

LHA

The LHA is a critical link between feeding and reward. The cells
located here receive input from ventricular neurons and have
diverse efferent and afferent connections with reward circuitry.
Both AgRP and Arc POMC neurons project to LHA (Wang
et al.,, 2015) and these same projections can be activated by
the satiety signal, leptin (Elias et al., 1999). Historically, the
LHA was treated as a “feeding center” based on the finding
that ablation produces hypophagia and starvation (Anand and
Brobeck, 1951a, 1951b), whereas electrical stimulation elicits
feeding (Hoebel and Teitelbaum, 1962; Margules and Olds,
1962). However, these results have been difficult to interpret
because LHA manipulations also have profound effects on moti-
vation and reward phenotypes (Carr and Simon, 1984; Hoebel
and Teitelbaum, 1962; Stuber and Wise, 2016; Teitelbaum and
Epstein, 1962). Rodents and primates reliably self-stimulate for
electrical stimulation of the LHA at the same sites that elicit
feeding (Margules and Olds, 1962; Rolls et al., 1980). Similarly,
both deprivation state and the administration of circulating
satiety signals such as insulin, glucagon, or leptin can modify
the rate of LHA self-stimulation (Abrahamsen et al., 1995; Bala-
gura and Hoebel, 1967; Carr and Wolinsky, 1993; Fulton et al.,
2000). The mechanisms underlying electrical self-stimulation
are multifaceted, though, as it can have divergent effects on
proximal or distal sites, is not cell-type specific, and can influ-
ence fibers of passage.

As has been discussed previously (DiLeone et al., 2003;
Stuber and Wise, 2016), there is considerable molecular and
anatomical heterogeneity within the LHA. This, along with the
dramatic effects that coarse manipulations have on feeding
and reward phenotypes, has made the LHA a prime target for
applications of molecular and genetic tools. Because manipula-
tions of many cell types have robust effects on both food intake
and self-stimulation, interpreting the present data in a binary
fashion as either “feeding” or “reward” related is fraught with
problems. Recent evidence suggests that mostly non-overlap-
ping populations of LHA neurons contribute differentially to
reward and aversion as well as feeding (Figure 2B). Acute acti-
vation of LHA glutamatergic neurons suppresses feeding and
drives aversion (Jennings et al., 2013a), while genetic ablation
potentiates food intake and weight gain (Stamatakis et al.,
2016), suggesting these cells as a negative regulator of feeding
and reward. LHA glutamatergic neurons predominantly project
to the lateral habenula (LHb). Though it is not traditionally
thought of as a feeding center, manipulations of the LHb can
influence food intake. Optogenetic inhibition of LHA glu-
tamatergic afferents within the LHb promotes food intake and
reward-related behaviors (Stamatakis et al., 2016), and optoge-
netic activation of LHb efferents within the ventral midbrain
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produces behavioral avoidance and suppresses consummatory
behavior (Stamatakis and Stuber, 2012). LHA GABAergic neu-
rons, another substantial LHA cell group, are intermingled
with and seem to functionally oppose glutamatergic cells.
Acute activation of LHA GABA cells enhances motivation for
food, drives food consumption, and is rewarding (Jennings
et al.,, 2015; Navarro et al., 2016), while acute inhibition or ge-
netic ablation reduces food intake and is aversive (Jennings
et al., 2015; Navarro et al., 2016). Similarly, acute activation
of an adjacent GABAergic population located in the zona in-
certa promotes approach and food intake with a preference
for palatable foods (Zhang and van den Pol, 2017). Emerging
evidence suggests that activity of LHA GABA neurons may
also be required for learning about cue-reward relationships
in rats (Sharpe et al., 2017). LHA GABAergic neurons comprise
heterogeneous subpopulations that may be functionally
distinct. Chemogenetic activation of the subset of LHA GABA
neurons expressing the neuropeptide galanin potentiates moti-
vated feeding for palatable foods without affecting chow intake
(Qualls-Creekmore et al., 2017). Another subset of LHA GABA
neurons express pancreas duodenum homeobox 1 (Pdx7)
and project to the PVH. Optogenetic activation of this
pathway promotes food intake in fed mice (Wu et al., 2015).
Orexin/hypocretin neurons of the LHA are also thought to
contribute to reward and feeding. Their activity is reduced
immediately following food consumption (Gonzélez et al.,
2016). Acute activation of LHA orexin neurons, which
project to the VTA, potentiates reward seeking for both
drugs and food (Harris et al., 2005; Inutsuka et al., 2014).
Orexin/hypocretin neurons may more generally control arousal,
though (Mahler et al., 2014). There are also overlapping subsets
of neurons within the LHA that express melanin-concentrating
hormone (MCH) (Domingos et al., 2013) or leptin receptors
(Leinninger et al., 2009) and project to the VTA to influence
dopamine release and intake of palatable foods.

The LHA receives input from the BNST (Jennings et al., 2013a)
and VTA (Taylor et al., 2014), two regions that are heavily
implicated in the control of positive and negative behavioral
states. Furthermore, LHA projections to the LHb (Stamatakis
et al., 2016), VTA (Nieh et al., 2015, 2016), and locus coeruleus
(Laque et al., 2015) can influence feeding and reward. Together,
the anatomical connectivity and nuanced functions of molecu-
larly defined cell types within the LHA suggest that this area
may contribute broadly to regulating motivation that is directed
toward feeding.

The specific synaptic connectivity between ventricular and
intermediate neurons (and within distinct intermediate neuron
populations) is still largely unknown. Arc AgRP and POMC
neurons innervate many of the same intermediate areas and
likely have antagonistic effects on downstream targets. Ventric-
ular neurons can influence—either through direct innervation
or through poly-synaptic connections with intermediate neu-
rons—the activity of canonical reward and aversion brain
regions.

Monoaminergic Systems

Monoaminergic systems (i.e., dopamine and serotonin) are
crucial for myriad behaviors, and manipulations of these cells
can have profound effects on feeding and reward phenotypes.
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Because direct connections between ventricular neurons and
monoaminergic neurons are sparse, indirect connections via in-
termediate cell groups likely orchestrate functional interactions.

Dopamine has long been implicated as a critical mediator of
goal-directed behavior and learning. Rats and mice readily learn
to selectively self-stimulate (Adamantidis et al., 2011; llango
et al., 2014; Rossi et al., 2013; Tsai et al., 2009; Witten et al.,
2011) and avoid optogenetic inhibition (Danjo et al., 2014; llango
et al., 2014) of midbrain dopamine neurons. Optogenetic activa-
tion of VTA GABAergic neurons, which reduces dopamine
release, inhibits licking for sucrose and promotes aversion (Tan
et al., 2012; van Zessen et al., 2012). Destruction of dopami-
nergic neurons causes profound deficits in feeding, movement,
motivation, and learning. In addition to its established role in
reward, dopamine signaling is also a critical component of volun-
tary feeding and motivated behavior in general. Intracranial self-
stimulation sites, which depend on dopamine release, have often
been found to promote feeding and depend on the current
satiety state of the subject (Abrahamsen et al., 1995; Adamanti-
dis et al., 2011; Carr and Wolinsky, 1993; Jennings et al., 2013a;
Stuber et al., 2011). Moreover, ablation of dopaminergic neurons
(Ungerstedt, 1971) or selective disruption of dopamine produc-
tion causes hypoactivity and aphagia in mice (Zhou and Palmiter,
1995). Circulating signals such as ghrelin and leptin can also in-
fluence the activity of dopaminergic systems (Palmiter, 2007),
although hormone receptor expression is much lower than
in ventricular populations. Acute administration of the orexigenic
peptide ghrelin excites VTA dopamine neurons in rodents (Abi-
zaid et al., 2006; Cone et al., 2014) and increases blood oxygen
level-dependent (BOLD) responses to food pictures in the ventral
midbrain and striatum in healthy volunteers (Malik et al., 2008).
In mice, the anorexigenic protein leptin can directly and indirectly
influence the activity of VTA dopamine neurons and reduce food
intake (Domingos et al., 2011; Fulton et al., 2006; Hommel et al.,
2006; Leinninger et al., 2009).

The mesolimbic dopamine system is also strongly influenced
by intermediate neurons. Direct connections between ventricular
neurons and dopaminergic cells are quite sparse and functional
interactions probably rely heavily on intermediate relays. Though
direct inhibition of dopamine neurons by AgRP neurons has not
been demonstrated in adult animals, AgRP neurons can modify
VTA dopaminergic plasticity and dopamine-dependent behav-
iors during development (Dietrich et al., 2012), and acute
activation of AgRP neurons in adult mice mediates a variety of
non-food-related behaviors, including anxiety and stereotypy
(Dietrich et al., 2015). It has recently been shown that palatable
food can promote feeding even in AgRP-impaired mice, an effect
that is dependent on dopaminergic signaling (Denis et al., 2015),
despite the sparseness of direct AQRP to VTA projections. The
circuit mechanisms governing these effects are unclear, though
they likely depend on at least one intermediate connection
linking AgRP and mesolimbic dopaminergic signaling. Ventral
tegmental dopaminergic neurons receive input from many inter-
mediate regions, including the PBN (Coizet et al., 2010). PBN
afferents can inhibit putative dopaminergic neurons, which
probably requires local interneurons since PBN neurons are
glutamatergic (Coizet et al., 2010). In addition to the PBN, VTA
dopaminergic neurons receive input from LHA, CeA, and BNST
and send dense projections to the NAc and PFC (Beier et al.,

2015). Both of these primary efferent targets of VTA dopamine
fibers exert high-level control over food seeking and goal-
directed action.

Ingestion of sugars and palatable foods is known to increase
striatal dopamine release (Hajnal et al., 2004; Hernandez and
Hoebel, 1988; Rada et al., 2005; Roitman et al., 2004, 2008;
Small et al., 2003), and the dopaminergic system is altered in
obese humans and in animal models of obesity (Volkow et al.,
2011). Striatal dopamine D2 receptor availability is inversely
correlated with obesity in humans and rats (Johnson and Kenny,
2010; Wang et al., 2001), and lentiviral-mediated knockdown of
D2 receptor expression makes rats more susceptible to weight
gain when allowed to consume calorically dense food (Johnson
and Kenny, 2010). While chronic D2 receptor blockade potenti-
ates weight gain (Cope et al., 2005), D2 receptor knockout
mice are not obese (Baik et al., 1995). Similarly, microinfusions
of D1- or D2-slective dopamine receptor antagonists into the
NAc fail to affect food intake in rats (Baldo et al., 2002). Thus,
specific functions of dopamine receptors per se in acute feeding
are open to interpretation. One possibility is that altered dopa-
mine receptor expression is an effect of obesity resulting from
pathological dopamine release. The observed changes related
to obesity and chronic antipsychotic administration may reflect
compensatory changes of other circuit nodes and not neces-
sarily causal involvement of dopamine receptors (Palmiter,
2007). Chronic food restriction in rats decreases extracellular
dopamine in NAc (Pothos et al., 1995). Aphagia resulting from
genetic disruption of dopamine production can be rescued by
restoration of dopamine signaling in the dorsal or ventrolateral,
but not the ventromedial, striatum (Darvas et al., 2014; Hnasko
et al., 2006; Szczypka et al., 2001). Gastric infusion of glucose
increases dopamine release in both the dorsal striatum and
NAc. Intriguingly, optogenetic activation of D1 receptor-ex-
pressing neurons in the dorsal striatum, but not the NAc, over-
rides the satiating effects of such an intra-gastric load, while
genetic ablation of these neurons produces the opposite effect
(Han et al., 2016). Although the mechanisms linking gastric
glucose sensing with dopamine release are not fully understood,
these results highlight the notion that dopamine signaling within
distinct striatal compartments is functionally heterogeneous.

While dorsal striatal dopamine is critical for the ability to feed
and sense glucose, NAc dopamine seems to be critical for the
motivation to feed. When dopamine fibers innervating the NAc
are selectively destroyed, rats become unwilling to exert effort
to obtain food despite being physically capable of eating and
performing instrumental actions (Aberman and Salamone,
1999). Because of this, it has been proposed that NAc dopamine
invigorates and motivates behavior independently of primary
effects on appetite (Salamone and Correa, 2012) and may func-
tion similarly to a gain signal. However, dopamine-deficient mice
that have dopamine production virally restored in the dorsal
striatum show similar instrumental responding for food and com-
parable break points on a progressive ratio task (Robinson et al.,
2007). The willingness to exert effort for food in these mice that is
absent in NAc dopamine-depleted mice may be due to differ-
ences in experimental timing. In viral restoration experiments,
mice recover for months prior to testing, whereas dopamine-
depleted rats are tested within weeks of surgery. This extra
time may allow the dorsal striatum to co-opt NAc functions.
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Alternatively, viral rescue within the dorsal striatum yields low
levels of dopamine in the NAc, which may be sufficient to rescue
motivational deficits. Interestingly, acute optogenetic activation
of dopamine D1 receptor-expressing projections from NAc to
LHA halts feeding, while inhibition potentiates consummatory
behavior (O’Connor et al., 2015). In addition to dopaminergic
input, neurons within the NAc receive dense glutamatergic inner-
vation from thalamic and cortical regions that convey information
related to gustation and executive function. Thus, the NAc may
integrate high-level descending signals with information pertain-
ing to homeostatic needs to direct behavior toward relevant
goals (Kelley, 2004).

Another major target of VTA dopamine projections is the PFC.
In humans, BOLD responses within the frontal cortex are posi-
tively correlated with the pleasantness of flavors (de Araujo
et al., 2003). In rats, aspiration of medial PFC (mPFC) produces
finickiness while having relatively little impact on the ability to
feed (Kolb and Nonneman, 1975). Similarly, excitotoxic lesions
of mPFC have little effect on energy homeostasis and body
weight (Davidson et al., 2009). However, dopamine is released
in the mPFC during consumption of palatable foods (Bassareo
and Di Chiara, 1997; Hernandez and Hoebel, 1990). Further-
more, a subset of fasting-activated mPFC neurons expressing
dopamine D1 receptors, presumed to be direct downstream tar-
gets of VTA dopamine axons, bidirectionally drive food intake
(Land et al., 2014). How mPFC influences on food intake and
reward-guided behavior integrate with its established role in
executive function, cognitive control, and learning (reviewed by
Miller and Cohen, 2001) remains to be determined.

In addition to the mesolimbic dopaminergic system, seroto-
nergic (5-hydroxytryptamine, 5-HT) neurons located in the dorsal
raphe nucleus are highly interconnected with both intermediate
and monoaminergic neurons (Muzerelle et al., 2016; Ogawa
etal., 2014; Pollak Dorocic et al., 2014) and contribute to feeding.
In general, pharmacological manipulations that increase 5-HT
availability tend to decrease feeding, while reducing 5-HT has
the opposite effect (for detailed reviews, see Blundell, 1986;
Simansky, 1996). Mice lacking 5-HT2C or 5-HT1B receptors
are hyperphagic and obese (Bouwknecht et al., 2001; Tecott
et al., 1995), and these receptors are thought to permit suppres-
sion of feeding via interactions with Arc AgRP and POMC neu-
rons (for discussion of this, see Sohn et al., 2013). However,
systemically agonizing 5-HT2C receptors does not impact daily
food intake or body weight in mice (Zhou et al., 2007). In vivo cal-
cium imaging reveals that serotonergic neurons increase their
activity during food consumption as well as social interactions
(Li et al., 2016); however, relatively few 5-HT neurons show Fos
induction following food ingestion (Takase and Nogueira,
2008), and blockade of 5-HT signaling within the nucleus of the
solitary tract is associated with increased feeding following
AgRP neuron ablation (Wu et al., 2012). Optogenetic activation
of dorsal raphe Pet-1 neurons, which release both glutamate
and 5-HT, is rewarding, promoting place preference and self-
stimulation (Liu et al., 2014). Importantly, optogenetic activation
of 5-HT neurons within the dorsal raphe can also increase
patience (Miyazaki et al., 2014), anxiety (Ohmura et al., 2014),
and pain sensitivity (Cai et al., 2014b). Given its disparate func-
tions and wide anatomical distribution, it has been hypothesized
that serotonin may underlie basic behavioral arousal or attention
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(Robbins, 1997). Though serotonin is able to influence feeding,
affecting food intake may be one of many consequences of
perturbation of this system.

Concluding Remarks

The neurocircuits that may bias behavior toward either homeo-
static or hedonic feeding are largely intertwined and overlapping.
Assignment of specific cell types and brain regions to one cate-
gory or the other is often unhelpful. Together, the systems
involved in hedonic and homeostatic aspects of feeding provide
a means by which the nervous system can dynamically coordi-
nate intake of “rewarding” stimuli in order to meet metabolic
demands and ensure survival. Because food is essential, it is
unsurprising that so many neuron populations that facilitate
food intake also promote rewarding phenotypes and those that
suppress appetite are aversive. Ventricular neurons of the hypo-
thalamus represent an entry point by which peripheral signals
reflecting the metabolic state of the animal can robustly and
efficiently influence the nervous system to ultimately orchestrate
behavior. The neurons located in the Arc and PVN integrate infor-
mation from circulating hormones and instruct intermediate
targets to initiate or cease the process of acquiring sustenance.
Intermediate neurons located in subcortical structures function
more generally, integrating input pertaining to various needs,
including feeding, mating, and safety. They ultimately influence
monoaminergic neurons, which are very general in function.
Monoaminergic neurons (i.e., mesolimbic dopamine) are
involved in motivation and can influence food intake. However,
in conjunction with their downstream targets, they are also
involved in numerous other processes including executive func-
tion and learning about the environment.

Recent technological advances have allowed researchers to
probe functional neurocircuits in vivo with unprecedented preci-
sion. Specifically, optogenetic and chemogenetic tools have
shed light onto the functional heterogeneity within anatomically
defined brain regions (Tables 1 and 2). Such tools have made it
possible to begin to answer the question of whether the AgRP
neuronal output represents a positive- or negative-valence
signal (Figure 2A), and they have greatly facilitated disentangling
the functional heterogeneity of the LHA (Figure 2B) among
many other brain regions. Because of the dual outcomes
(hyperphagia/reward or hypophagia/aversion) of some acute
manipulations, it is important to measure both feeding and
reward phenotypes. Note the frequency of question marks in
Tables 1 and 2.

While these tools have been invaluable in defining functional
circuit nodes embedded within complex neural tissue, their lim-
itations must be considered when interpreting results. Viral
transduction, for example, can introduce unexpected variability
into experiments. Seemingly small differences in injection loca-
tion, virus preparation, or subject age may have a large impact
on the experimental results. It is important to consider the
quantitative relationship between viral transduction and behav-
ioral outcomes (for a detailed discussion, see Sternson et al.,
2016). Moving forward, bulk manipulations alone may be insuffi-
cient to disentangle whether or how particular cells contribute
to homeostatic or hedonic feeding behavior. This is, in part,
because the outcomes of bulk activation or inhibition within
interconnected circuits can be difficult to predict and can create
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Table 2. Acute Manipulations of Molecularly and Anatomically Defined Long-Distance Projections that Influence Food Intake Also

Affect Appetitive Behavior

Area of Origin Projection Manipulation Food Intake Appetitive Behavior References
Arc AgRP—BNST ChR2 1 + ? Atasoy et al., 2012; Betley et al., 2013;
Garfield et al., 2015
AgRP— PVN ChR2 1 + ? Betley et al., 2013; Garfield et al., 2015
AgRP— LHA ChR2 1 + ? Betley et al., 2013; Garfield et al., 2015
AgRP — CeA ChR2 T / ? Betley et al., 2013
AgRP— PBN ChR2 T / ? Betley et al., 2013
Oxtr— PVN ChR2 1 - ? Fenselau et al., 2017
PVN Sim1—-PAG Gi 1 ? Stachniak et al., 2014
Sim1—PBN Gi 1 / ? Stachniak et al., 2014
MC4R —PBN ChR2 T - + Garfield et al., 2015
BNST Vgat—LH ChR2 T + + Jennings et al., 2013a
Vgat—LH eArch3.0 1 - - Jennings et al., 2013a
Vgat— VTA ChR2 i / + Jennings et al., 2013a; Jennings
et al., 2013b
Vglut2 - VTA ChR2 i / - Jennings et al., 2013b
CeA Vgat— PAG ChR2 1 + (prey pursuit) ? Han et al., 2017
Vgat— RF ChR2 1 + (chewing) ? Han et al., 2017
Htr2a— PBN ChR2 1 + + Douglass et al., 2017
PBN CGRP—CeA ChR2 T — ? Carter et al., 2013
CGRP—CeA Gi 1 + ? Carter et al., 2013
CGRP —BNST ChR2 1 / ? Carter et al., 2013
LHA Vglut2 —IHb eNpHR3.0 1 + + Stamatakis et al., 2016
LHA—VTA ChR2 1 + ? Nieh et al., 2015
LHA—VTA eNpHR3.0 l / ? Nieh et al., 2015
Vglut2 — VTA ChR2 T / - Nieh et al., 2015; Nieh et al., 2016
Vgat— VTA ChR2 1 + Nieh et al., 2015; Nieh et al., 2016
Vglut2 - VTA eNpHR3.0 1 / ? Nieh et al., 2016
Pdx1—PVH ChR2 1 + ? Wu et al., 2015
LHb LHb—RMTg ChR2 T - - Stamatakis and Stuber, 2012
NAc D1R—LHA ChR2 1 + ? O’Connor et al., 2015
D2R— LHA ChR2 1 / ? O’Connor et al., 2015
GAD —LHA ChR2 1 - ? O’Connor et al., 2015

Conventions are the same as Table 1 except arrows indicate putative effects on presynaptic activity but do not necessarily indicate the direction of
change in postsynaptic output. Arc, arcuate nucleus of the hypothalamus; AgRP, agouti-related peptide; BNST, bed nucleus of the stria terminalis;
CeA, central nucleus of the hypothalamus; CGRP, calcitonin gene-related peptide; ChR2, channelrhodopsin-2; D1R, d1-like dopamine receptor;
D2R, d2-like dopamine receptor; eArch3.0, archaerhodopsin-3.0; eNpHR3.0, halorhodopsin-3.0; Gi, hM4Dq (Gi-coupled designer receptor exclu-
sively activated by designer drug); Htr2a, serotonin receptor 2a; LHA, lateral hypothalamic area; LHb, lateral habenula; MC4R, melanocortin 4 receptor;
NAc, nucleus accumbens; Oxtr, oxytocin receptor; PAG, peri-agueductal gray; PBN, parabrachial nucleus; Pdx1, pancreas duodenum homeobox 1;
PVN, paraventricular nucleus of the hypothalamus; RMTg, rostromedial tegmental nucleus; Sim1, single-minded 1; Vgat, vesicular GABA transporter;

Vglut2, vesicular glutamate transporter 2; VTA, ventral tegmental area.

ambiguity about whether some functions attributed to particular
neurons are related to unintended effects on downstream tar-
gets. Furthermore, synchronous activation of large groups of
neurons is unlikely to capture the nuanced activity patterns
that have been observed in vivo. It is therefore important that
researchers carefully consider stimulation parameters to most
closely approximate endogenous activity patterns. One potential
way to address this is to record neural activity of relevant circuitry
to identify and isolate subsets of neurons that selectively encode
discrete aspects of behavior. Continued advancement in deep
brain imaging will undoubtedly identify unique functional groups

of neurons. Such populations may be defined by anatomical
connections and molecular profiles. The traditionally singular
molecular markers currently used to define cell types may be
insufficient to specify functional units within complex, inter-
twined circuits. Combinatorial viral approaches allow expression
of exogenous proteins in cell types that are defined by two or
more features (Fenno et al., 2014). Combined with a more
detailed understanding of the molecular profile of individual
cells by leveraging high-throughput single-cell sequencing
approaches, it may eventually be possible to identify pathways
that selectively contribute to feeding.
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Here, we have highlighted the major nodes involved in feeding,
but our list is not exhaustive. Because so many areas and circuits
may be involved in feeding and reward, some of which may not
be known yet, it is important for researchers to screen for these
phenotypes in a non-biased manner to determine relevant brain
regions and cell types. The anatomy of the systems discussed
here has been simplified for relevance to feeding, but it is impor-
tant to note that intermediate and monoaminergic neurons
receive input from disparate brain regions that are involved in a
variety of motivated behaviors (e.g., anxiety and social behavior).
The cells contributing to these behaviors may influence interme-
diate and monoaminergic pathways to suppress feeding in
necessary situations (Burnett et al., 2016) independently of the
activity of ventricular neurons. The details of such drive compe-
tition are largely unknown, but may involve selective tuning of the
activity of intermediate neuron populations.

As a result of the dual role that intermediate and monoamin-
ergic neurons play in guiding homeostatic and hedonic feeding,
it is easy to imagine how they might be co-opted by drugs of
abuse or unhealthy foods to the detriment of the organism. The
circuits implicated in obesity and drug addiction overlap
substantially with those that control typical feeding (Castro
et al., 2015; Volkow et al., 2011). Elucidating the precise neuro-
circuits controlling unique aspects of feeding and reward
seeking will be critical to understanding pathological behavior.
Thus, when considering therapeutics for obesity, it is important
not to immediately discount drugs that affect the reward system,
as they may also have profound impact on food intake and
energy homeostasis.
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